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1. INTRODUCTION AND GOALS 

Disease modelling is extremely important to understand the pathological processes which cause a 

given disease, to find potential targets and to develop new medical interventions. One of the main 

problems when studying disorders of the nervous system is the difficulty of adequately modelling 

the physiological mechanisms of the brain. Indeed, beside the limited accessibility to the human 

brain for research purposes, the usage of animal models and transgenic immortalized cell lines 

have major limitations, failing to fully recapitulate the human neurological diseases and often 

leading to overestimate the drug efficacy, respectively.  

Development of iPSC technology revolutionized the way of studying neurological disorders, 

including Alzheimer’s disease (AD). Through the differentiation of adult somatic cells into 

neurons, this cutting-edge methodology allows to obtain human-derived neuronal cells which 

maintain the individual genetic background. Interestingly, several reports demonstrated that 

human derived neurons very well mimic the pathological hallmarks of AD, including increased 

amyloid levels, TAU hyperphosphorylation, oxidative stress and cell death, thus supporting that 

iPSC-derived neurons provide a more relevant platform for disease modelling, drug screening and 

identification of new targets.  

Recently, the calcium sensing receptor (CaSR) has been indicated as a potential key player in AD 

processes. The CaSR is a G-protein coupled receptor (GPCR) mainly expressed in parathyroid 

glands where it exerts its main role in controlling Ca2+ homeostasis and parathyroid hormone 

(PTH) secretion. In addition, the CaSR plays several functions in the nervous system in both 

physiological and pathological conditions. Concerning AD, the receptor’s activation was found to 

promote amyloid Aβ42-extracellular secretion from exogenous amyloid-exposed adult human 

astrocytes (NAHAs). The extracellular accumulation of amyloid Aβ42 constitutes the premise for 

amyloid plaques formation, which is a main hallmark of AD. Interestingly, inhibition of CaSR 

with calcilytic NPS 2143, a negative allosteric modulator of CaSR, efficiently counteracted the 

release of amyloid, by forcing the non-amyloidogenic processing of amyloid precursor protein 

(AβPP) over the amyloidogenic processing. Such evidences encouraged to repurpose calcilytic as 

a potential treatment for AD.  

Based on these evidences, the aims of the current study were to validate our cellular in vitro system 

as a platform for drug screening and to study the effects of calcilytic NPS 2143 on AD phenotype. 
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Objectives of this study 

The main aims of the study were: 

- To explore the CaSR expression in the iPSC-derived neurons, for which any evidence 

exists, and its potential activated signalling in the neuronal cultures. 

- To characterize the iPSC derived neuronal cultures, especially focusing on the amyloid 

precursor protein (AβPP) processing and amyloid secretion, in order to substantiate the 

relevance of the iPSC derived neurons for disease modelling and drug testing. 

- To investigate the effects of CaSR inhibition with calcilytic on the AD pathomechanism 

recapitulated in iPSC derived neurons. 

 

Specific objectives of the research were: 

- Differentiate the mouse ESCs and human iPSCs-derived neural precursor cells (NPCs) into 

neurons. 

- Characterize the iPSC-derived neurons by detection of neuronal marker expression and 

assessment of functional properties. 

- Detect the CaSR expression in mouse and human brain and kidney tissues for comparative 

analyses. 

- Detect the CaSR expression in control and AD neuronal lines. 

- Pharmacological modulation of the amyloid β secretion and AβPP processing by γ-

secretase inhibitor in control and AD neurons. 

- Investigate the effect of calcilytic on amyloid β secretion and sAβPPα release in control 

and AD cultures. 

- Analyse the plasma membrane proteins expression in control and AD derived neurons 

exposed to calcilytic.  
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2. MATERIALS AND METHODS 

The chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA) and the cell culture 

reagents and culture plates were purchased from Thermo Fisher Scientific (Waltham, MA, USA), 

unless specified otherwise. 

2.1 Mouse embryonic stem cell culture  

The mouse embryonic stem cell (mESC) line HM1 (129/Ola mouse strain origin) was used in the 

experiments. The pluripotent cells were maintained on early-passage mitotically inactivated 

(Mitomycin C treated) mouse embryonic fibroblast feeders (MEF) and cultured in mESCs medium 

containing mouse leukaemia inhibitor factor (LIF) 1000 U/mL. The cells were passaged before 

reaching 70% confluency (approximately every 2 Days). 

2.2 Induction of neuronal differentiation of mouse ESCs 

For neuronal differentiation, mESCs were starved for 12 h the night before passaging in mouse 

neuronal differentiation medium (B27 medium). On the next morning cell cultures were 

trypsinized, and pre-plated onto cell culture dishes (10 cm dish) for 30 min (through microscope 

control). In this step MEF cells soon attached to the surface of the dish while the ESCs were still 

floating in the media, making easier the collection of mESCs. Thereafter, ESCs were carefully 

centrifuged, re-suspended in B27 medium and plated onto matrigel-coated dishes for Western Blot 

(WB) and immunocytochemistry (ICC). The medium was renewed every day during the 7-days 

differentiation. 

2.3 Terminal differentiation of human iPSC-derived NPCs into neurons 

In the present study, we used iPSCs derived-neural precursor cells (NPCs) from two healthy 

individuals, named Ctrl-1 and Ctrl-2, and from a fAD patient with a mutation in PSEN1 gene, 

named fAD-1. Control and fAD NPCs were plated on poly- L-ornithine/laminin (POL/L) -coated 

dishes, and maintained in neural maintenance medium (NMM) supplemented with 10 ng/ml EGF 

and 10 ng/ml bFGF. To differentiate neuronal progenitors into neurons, NPCs were cultured for 6 

weeks in NMM supplemented with 0.2 mM ascorbic acid and 25 μM β-mercaptoethanol, with 

medium changed every 3-4 days. Cells were assessed through ICC, Calcium imaging, ELISA, WB 

and Biotinylation experiments.  

2.4 Calcium imaging 

Functional properties of the 4-weeks differentiated Ctrl-1 and fAD-1 neurons were evaluated by 

calcium imaging. Cells grown on coverslips were first incubated with 1 μM fura-2-AM for 30 

minutes at 37°C, and then placed in a perfusion chamber mounted upon an Olympus IX71 inverted 

microscope equipped with a Cairn monochromator-based epifluorescence system (Cairn 
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Instruments, Faversham, UK). Solutions and agonists -60 mM KCl; 100 µM GABA in 

physiological extracellular solution, (ECS); 100 µM GABA in reduced Cl-; 100 µM AMPA; 100 

µM Kainic acid- were locally applied to the neurons using a rapid solution changer (RSC160, 

Intracel RSC160, Intracel, Royston, UK). Fura-2 was alternately excited with light of 340 and 380 

nm and images were captured at 510 nm using an Orca CCD camera (Hamamatsu Photonics, 

Welwyn Garden City, UK). Following background subtraction of the emission intensities evoked 

by each excitation wavelength, emission ratios (340/380) were calculated offline. These 

experiments were performed in the laboratory of School of Biosciences, Cardiff University, with 

the supervision of Professors Daniela Riccardi and Paul J. Kemp. 

2.5 Immunocytochemistry 

Neuronal differentiation and CaSR expression were evaluated in mouse ESC-derived neurons and 

human iPSC-derived neurons by ICC. Both mouse and human cells were fixed in 4% 

paraformaldehyde (PFA) for 15 minutes at room temperature (RT), then permeabilized and 

blocked for 60 min at RT. The cells were incubated with specific primary antibodies overnight at 

4°C. To visualize the signal, isotype specific secondary antibodies conjugated with appropriate 

fluorophores were applied, while nuclei were counterstained with DAPI.  Samples were analysed 

under fluorescent microscope equipped with 3D imaging module (Axio Imager system with 

ApoTome; Carl Zeiss MicroImaging GmbH) controlled by AxioVision 4.8.1 software (Carl Zeiss). 

Alternatively, images were acquired with a Zeiss LSM 880 confocal laser scanning microscope 

using the ZEN Imaging Software (Carl Zeiss AG, Germany). 

2.6 Lysis of differentiated neuronal cells and tissues from brain and kidney 

Mouse ESC-derived neurons and human iPSC-derived neuronal cultures were collected at the end 

of the differentiation process (mouse: TD7; human: TD42). Mouse and human tissue brain and 

kidney samples were homogenized using a tissue homogenizer. Neuronal cells and tissue 

homogenates were lysed with RIPA Lysis buffer supplemented with Protease and Phosphatase 

Inhibitor cocktail. After centrifugation, lysates (supernatants) were transferred in new tubes for 

protein quantification and WB analyses. 

2.7 Transfection of SH-SY5Y neuroblastoma with pcDNA-5-FRT-HA-tag-hCaSR 

SH-SY5Y neuroblastoma cells were grown up to 70-80% confluence. Thereafter, cells were 

transiently transfected with pcDNA-5-FRT-HA-tag-hCaSR (provided by Prof. Hans Bräuner-

Osborne, University of Copenhagen, Denmark) using Lipofectamine® 2000 reagent. After 48 h 

of transfection, cells were processed for cell lysis and protein quantification similarly to the 

differentiated neuronal cells (see paragraph 2.6). 
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2.8 Immunoblotting 

Lysates (5-50 μg) from human iPSC-derived neuronal cultures, SH-SY5Y-HA-tag-hCaSR and 

from brain and kidney tissues were separated on 12% or 7.5% precast gels and transferred to 

Immun-Blot® PVDF Membrane (Bio-Rad). The membranes were blocked with TBST containing 

5% BSA or non-fat milk and then incubated with the respective primary antibody solution 

overnight at 4°C. After washing with TBST, the membranes were incubated with horseradish 

peroxidase (HRP)-conjugated secondary antibodies for 1 hour at RT. Signals were detected with 

SuperSignal™ West Dura Extended Duration Substrate by KODAK Gel Logic 1500 Imaging 

System and Kodak MI SE imaging software. Densitometry measurement of protein bands 

intensity was carried out using Image Studio™ Lite software (LI-COR).  

2.9 Treatment with γ-secretase inhibitor DAPT and calcilytic NPS 2143 

Neuronal cultures differentiated for 6 weeks were treated with γ-secretase inhibitor DAPT or with 

calcilytic NPS 2143 hydrochloride. Both DAPT and NPS 2143 were dissolved in DMSO and next 

diluted in NMM medium at a final concentration of 1 μM. In the experiments with the γ-secretase 

inhibitor, cells were treated with DAPT or vehicle for 48 h, followed by media collection and 

harvesting for protein. For the experiments with NPS 2143, cells were added with fresh media 

containing NPS 2143 or vehicle. After 24 h, the conditioned media were temporarily collected in 

sterile tubes and neuronal cultures were exposed for 30 minutes to either NPS 2143 or vehicle 

dissolved in fresh medium. Then, the previously cell-conditioned media, supplemented with a 

second pulse of calcilytic or vehicle, were added again to the plates. At the end of treatments (48 

h), collection of conditioned media and cell lysates or biotinylation and isolation of cell surface 

proteins were performed. 

2.10 ELISA of Aβ40 and Aβ42 secreted in conditioned media 

After 48 h treatment with DAPT or NPS 2143, conditioned media were collected. Extracellular 

Aβ40 and Aβ42 levels were measured using Human β-Amyloid (1-40) ELISA Kit and Human β-

Amyloid (1-42) ELISA kit, highly sensitive (FUJIFILM Wako Pure Chemical Corporation of 

Japan), according to the manufacturer’s instructions. The signal was detected with Varioskan Flash 

Multimode Reader (Thermo Fisher Scientific). The secreted Aβ levels were normalized to total 

protein content of cell lysate. 

2.11 Biotinylation and isolation of plasmalemmal proteins 

Following to 48 h treatment with calcilytic, cell culture media were collected. Cells were washed 

twice with ice-cold PBS and incubated with Biotin solution for 30 minutes at 4°C. After adding 

Quenching Solution, Biotinylation reaction was stopped. Cells were collected and pellets were 
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lysed for 30 minutes on ice with intermittent vortexing. Then, lysates were centrifuged and 

supernatants were incubated for 1 h at RT to allow the biotinylated proteins to bind to the 

NeutrAvidin Gel. The unbound proteins, representing the intracellular fractions named “Flow-

troughs” (FT), were collected by centrifugation. Finally, the biotinylated surface proteins were 

incubated with SDS-PAGE Sample Buffer for 1 h at RT and were collected by column 

centrifugation as “Eluate” fractions (E). FT and E samples were loaded on precast gels for WB 

analyses. 

2.12 Statistical Analysis 

Data were analysed using GraphPad Prism 5 software. Analysis of data was presented in the form 

of mean±S.E.M. (standard error of the mean). Statistical significance was tested by either Student’s 

t-test (two-tailed) or one-way ANOVA with Tukey’s post-test. In all cases, significance was noted 

at *p<0.05. 
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3. RESULTS 

3.1 Characterization of mouse-ESCs derived neurons 

Before neuronal induction, mouse ESCs expressed major pluripotency markers (OCT4, SOX2, 

NANOG and SSEA-1) as demonstrated by ICC analyses. At Day2 of differentiation, cells 

underwent the neuroectodermal lineage commitment and were positively stained for NESTIN, 

PAX6 and SOX1 proving the differentiation of ESCs in NPCs, although OCT4 expression was 

still detectable. Finally, differentiated neurons expressing TUBB3 and MAP2 were observed in 

the cultures at Day6 of differentiation. However, at the same time with similar density, NPCs were 

still largely present in the cultures. 

3.2 Expression of CaSR in mouse-ESCs derived neurons and in mouse brain and kidney 

tissues 

The specificity of anti-CaSR antibody was first validated in SH-SY5Y neuroblastoma cells 

transiently transfected with HA-Tag-hCaSR. WB analyses revealed expression of the CaSR in 

form of monomers (~130-140 kDa) and dimers (~260-280 kDa) in the transfected cells. After that, 

the receptor protein expression was demonstrated in HM1-differentiated MAP2-positive neurons 

by ICC. Moreover, WB analyses confirmed the expression of CaSR in mouse brain and kidney 

tissue lysates with kidney lysate having a higher receptor expression than the brain lysate, as 

expected. The blot showed several bands between ~100 and ~130 kDa, which represent the 

putative non-glycosylated and glycosylated CaSR monomers in both tissue samples. Additional 

bands, representative of CaSR dimers, were observed at higher molecular weight (~250-260 kDa) 

in brain and kidney samples. Next step was to investigate the receptor’s role in neurological 

phenotype. 

3.3 Characterization of iPSC- derived neurons 

Control and fAD NPCs were successfully differentiated towards neuronal cells after 6 weeks. By 

immunostainings we confirmed the differentiation of NPCs, stained with the specific markers 

PAX6 and NESTIN, into neurons expressing MAP2 and TAU. Moreover, Ca imaging analyses 

revealed that 4 weeks-differentiated control and fAD cells positively respond to stimulation with 

high KCl, GABA, AMPA and Kainic acid, demonstrating that neurons expressed functional 

voltage gated ion channels, GABA receptors and ionotropic glutamate receptors already at this 

stage of differentiation. No evident differences between Ctrl and fAD neuronal cultures were 

observed, which prompted us to use these cell lines for further experiments. 
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3.4 Modulation of AβPP processing and amyloid secretion by ɣ-secretase inhibitor 

In order to use patient derived neurons as a platform for testing potential anti-amyloid drugs, we 

first assessed the effects of the potent ɣ-secretase inhibitor DAPT on AβPP physiological 

processing and Aβ secretion. In line with our previous report, ELISA of conditioned media 

confirmed that PSEN1 mutant neurons presented a higher Aβ42/Aβ40 ratio compared to control 

cells. Data from each Aβ species showed that this ratio change was primarily due to a ~2-fold 

increase in production of Aβ42 in fAD neurons respect to control cell lines. Importantly, 48 h 

treatment with DAPT (1 μM) drastically reduced the secretion of Aβ40 and Aβ42 from both 

control and fAD neurons. Nevertheless, the ratio between Aβ42 and Aβ40 in fAD cells treated 

with DAPT remained higher than the ratio observed in control cells. Consistent with inhibition of 

ɣ-secretase activity, western blot analyses of lysates from healthy and PSEN1 mutant neurons 

demonstrated that DAPT treatment led to a strong accumulation of AβPP- C terminal fragment 

(AβPP- CTF), which constitutes the substrate of ɣ-secretase. These observations demonstrated that 

AβPP- and amyloid- processing of control and patient-derived neurons efficiently respond to 

pharmacological modulation with ɣ-secretase inhibitor, thus allowing to use this cellular model to 

explore the potential of calcilytic in these processes. 

3.5 CaSR expression in human derived neurons 

Although evidences exist showing that CaSR is expressed in several regions of human brain and 

in human astrocytes, no studies have investigated the receptor presence in human iPSC derived 

neuronal cultures. By ICC, the CaSR expression was demonstrated in 6-weeks old MAP2 positive 

neurons differentiated from control and fAD human iPSCs. Furthermore, WB analyses confirmed 

that control and fAD cells present CaSR-specific protein, representing both the monomeric form 

at ~120-130 kDa and the dimeric form at ~ 250-260 kDa. No evident differences were observed 

between healthy and PSEN1 mutant cells regarding the expression of the receptor. Similar 

expression of CaSR was demonstrated in lysates of adult human brain and kidney tissues.  

3.6 ERK1/2 phosphorylation in iPSC-neurons treated with calcilytic NPS 2143 

Based on several studies, the CaSR activation promotes ERK1/2 phosphorylation signaling. To 

investigate whether a similar intracellular pathway is endogenously activated in human iPSC-

neurons, the ERK1/2 phosphorylation levels were evaluated in cells exposed to calcilytic for 48 h. 

Immunoblotting results showed that both Ctrl-1 and fAD-1 cells presented discrete amounts of 

ERK1/2 phosphorylation, which remained unchanged after treatment with NPS 2143. 
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3.7 Modulation of amyloid secretion in fAD neurons treated with calcilytic NPS 2143 

Evidences reported that calcilytic inhibited Aβ accumulation and secretion from human astrocytes 

treated with exogenous amyloid. To evaluate the effect of calcilytic in iPSC derived neurons, 6 

weeks old control and fAD cells were treated with NPS 2143 for 48 hours. ELISA analyses of 

conditioned media revealed that treatment with calcilytic had no significant effect on Aβs secretion 

in control cell lines. Conversely, NPS 2143 reduced by ~25% the Aβ40 and Aβ42 in the 

conditioned media of fAD cells compared to levels present in the vehicle treatment. Moreover, as 

calcilytic caused a similar reduction of both amyloid species in fAD neurons, the resulting ratio 

between the Aβ42 and Aβ40 in PSEN1 mutant cells treated with NPS 2143 was not significantly 

changed compared to the treatment with vehicle, remaining higher than the ratio displayed by the 

control cell lines.  

3.8 Modulation of sAβPPα release from fAD neurons treated with calcilytic NPS 2143 

According to recent evidences, NPS 2143 promoted the sAβPPα release from human astrocytes 

treated with exogenous Aβ. Therefore, we investigated the sAβPPα secreted by iPSC-neurons after 

48 h incubation with calcilytic. Interestingly, western blot analyses of conditioned media 

demonstrated that fAD neurons released significantly lower amount of sAβPPα compared to the 

control cell lines. In addition, we found that calcilytic strongly increased the release of sAβPPα 

from fAD cells whereas no evident effect was observed in control cells. Such observations would 

indicate that NPS 2143 favored AβPP non-amyloidogenic α-pathway while it decreased the 

amyloidogenic β-processing only in cells with PSEN1 mutation. 

3.9 Modulation of CaSR and PSEN1 expression at the plasma membrane of fAD neurons 

treated with calcilytic NPS 2143 

To explore whether the effects of calcilytic on AβPP processing observed in PSEN1 mutant cells 

were due to changes in AβPP - or secretase- expression at plasma membrane, 6 weeks old cultures 

were treated with NPS 2143 and biotinylation of surface’s proteins was performed. Efficient 

isolation of biotinylated proteins at cell surface was validated by using Integrin α7 as a positive 

control for plasma membrane expression. WB analyses showed that AβPP expression at cell 

surface remained unchanged in control and fAD cells following treatment with calcilytic. 

Interestingly, fAD cells treated with NPS 2143 presented significantly reduced levels of CaSR and 

PSEN1 in the eluted fraction compared to vehicle treatment. In contrast, cell surface expression of 

CaSR and PSEN1 was not affected by calcilytic in the control cell line. Although the reduction of 

CaSR and PSEN1 at the cell surface of fAD cells treated with calcilytic, we did not detect evident 

changes in the levels of these proteins in the corresponding FT fractions. Finally, cellular 

localization of ADAM10 and BACE1 was not affected by calcilytic treatment in both cell lines. 
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4. NEW SCIENTIFIC RESULTS 

In this research, the role of CaSR in Alzheimer’s disease was investigated. After successful 

differentiation of mouse and human stem cells into neurons, the expression of the CaSR was 

detected in both species. Next, the AD phenotype in diseased iPSC-derived neurons were 

characterized and the effects of CaSR’s negative modulation with calcilytic on AD cellular 

mechanisms were investigated. The following new scientific achievements were obtained: 

1. For the first time, I detected the protein expression of CaSR in both control and fAD iPSC-

derived neurons. 

2. I found that calcilytic treatment did not modify the ERK1/2 phosphorylation in iPSC-derived 

neurons. 

3. As a novel finding, I showed that PSEN1 mutant iPSC-derived neuronal cultures secrete lower 

amounts of sAβPPα compared to the control cell lines, which represent an important key 

feature of AD that is recapitulated in our in vitro system. 

4. By evaluating the amyloid Aβ levels of conditioned media, I demonstrated the effect of 

calcilytic NPS 2143 in decreasing Aβ secretion in fAD neuronal cells only. 

5. I reported that treatment with calcilytic NPS 2143 significantly increases the release of sAβPPα 

from PSEN1 mutant neuronal cells. 

6. Finally, I found that calcilytic NPS 2143 changes the cellular localization of the CaSR and 

PSEN1 in fAD-neurons, by reducing their presence at the plasma membrane.  
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5. DISCUSSION AND FUTURE PERSPECTIVES 

In the present thesis, we studied the role of the CaSR in the nervous system using pluripotent stem 

cell (PSC) lines of mouse and human species to generate neurons. By using this cellular system, 

we investigated the role of CaSR in neurological diseases, with special focus on Alzheimer’s 

disease, the most common form of dementia worldwide. In the last years, iPSCs technology has 

been intensively applied for studying neurodegenerative diseases, as AD. Encouraging data from 

different laboratories worldwide, seem to converge to the conclusion that iPSC-derived neuronal 

cultures obtained from patients constitute more relevant platforms for disease modelling and drug 

testing, obviating some limitations of conventional systems, and allowing for identification of 

potential targets. Recently, several studies indicated that CaSR might be involved in AD 

mechanisms and that its inhibition with calcilytic NPS 2143 might help to reduce amyloid 

secretion and to increase sAβPPα release. 

 

To this aim, we first provided evidence of the expression of CaSR in neurons differentiated from 

mouse ESCs, which represented the premise for the next investigation step based on human iPSC-

derived neurons. The switch from the animal- to the human- system was due to the need to model 

in vitro the neurodegenerative mechanisms of Alzheimer’s disease. Experiments were conducted 

on two iPSC- cell lines, derived from two healthy individuals and one fAD cell line, obtained from 

a patient with PSEN1 mutation and early onset AD, whose a wide characterization was published 

in our previous work (Ochalek et al., 2017). By using ICC and Ca imaging approaches, we first 

confirmed the efficient differentiation of iPSC-derived neuronal progenitors into neurons 

expressing the two main neuronal markers MAP2 and TAU together with functional ion channels 

and neurotransmitter receptors. Moreover, in agreement with our previous study (Ochalek et al., 

2017), here we confirmed that fAD-1 iPSC-neurons presented higher secretion of Aβ42 and higher 

Aβ42/Aβ40 ratio compared to healthy neurons, which are characteristic of AD phenotype.  

 

Then, in order to substantiate the validity of iPSC-neurons as a robust platform for drug screening, 

we assessed the effect of the potent γ-secretase inhibitor DAPT on AβPP processing and amyloid 

production. Through ELISA and WB analyses, we demonstrated that DAPT treatment drastically 

reduced endogenous secretion of Aβ40 and Aβ42, while it concomitantly induced an intracellular 

accumulation of AβPP -C-terminal fragment in control and fAD neurons. The effects mediated by 

DAPT allowed to confirm that iPSC-neurons present a functional γ-secretase activity and AβPP 

processing, which can be pharmacologically modulated.  

As a next step, we demonstrated the protein expression of CaSR in control and fAD iPSC derived 

neurons for the first time, prompting to test the potential of calcilytic on these cells. Through 
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ELISA analyses of amyloid species released in the culture media, we demonstrated that calcilytic 

NPS 2143 significantly reduced the levels of Aβ40 and Aβ42 secreted from PSEN1 mutant 

neurons, while any effect was observed in control cell lines. Moreover, as a new result, we reported 

that PSEN1 mutant iPSC derived neurons endogenously displayed lower levels of sAβPPα in the 

conditioned media, compared to control cells. This observation represents a further remarkable 

feature of AD phenotype which is recapitulated in our in vitro system. Interestingly, we found that 

NPS 2143 significantly increased the release of soluble AβPPα from PSEN1 mutant cells while it 

did not change the sAβPPα levels secreted from healthy neurons. Finally, we showed that calcilytic 

significantly reduced the expression of CaSR and PSEN1 at cell surface of fAD neurons, an effect 

which was not observed in healthy cells.  

 

Altogether, we provided evidences that calcilytic positively counteracted amyloid secretion and 

sAβPPα loss in a relevant model of familial AD. Based on our data and other reports, the 

therapeutic effect of NPS 2143 observed in fAD neurons might be due to the fact that these cells 

secrete higher levels of Aβ42 compared to healthy neurons. Thus, such aberrant over-production 

of Aβ42 would represent the premise for CaSR to be activated and for calcilytic to exert its 

therapeutic effect. Considering that several studies demonstrated that iPSC-neurons generated 

from sporadic AD patients also present increased levels of Aβ42 secretion, a major perspective 

would be to explore whether NPS 2143 produces similar effects in sporadic neurons. Indeed, 

sporadic patients represent majority of AD cases, counting about 95% of total patients, whereas 

only up to 5% are familial cases. Therefore, testing the calcilytic in sporadic iPSC-neurons would 

be highly relevant from a therapeutic point of view. Moreover, considering that NPS 2143 was 

recently found to efficiently reduce the phosphorylated-TAU release and the GSK3β activation 

from Aβ-exposed astrocytes, and that both these processes can be recapitulated in AD iPSC-

neurons, further studies would be needed to investigate the potential of calcilytic in such AD-

related mechanisms in patient-derived neurons. In case of positive outcome, calcilytic treatment 

would represent an attractive therapeutic strategy against Alzheimer’s disease. 
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